
Defining the interval for monitoring potential adverse events 
following immunization (AEFIs) after receipt of live viral vectored 
vaccines

Sonali Kochhara, Jean-Louis Exclerb, Karin Bokc, Marc Gurwithd, Michael M. McNeile, 
Stephen J. Seligmanf, Najwa Khuri-Bulosg, Bettina Klugh, Marian Laderoutei, James S. 
Robertsonj, Vidisha Singhk, Robert T Chenk,l, Brighton Collaboration Viral Vector Vaccines 
Safety Working Group (V3SWG)1,2

aGlobal Healthcare Consulting, New Delhi, India; Erasmus MC, University Medical Center, 
Rotterdam, The Netherlands; University of Washington, Seattle, USA

bInternational Vaccine Institute, Seoul, Republic of Korea

cNational Vaccine Program Office, Office of the Assistant Secretary for Health, US Department of 
Health and Human Services, Washington DC, USA

dPaxVax Inc., San Diego, CA, USA

eImmunization Safety Office, Centers for Disease Control and Prevention (CDC), Atlanta, GA, 
USA

fDepartment of Microbiology and Immunology, New York Medical College, New York, USA; St. 
Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University, New York, NY, 
USA

gDivision of Infectious Disease, Jordan University Hospital, Amman, Jordan

hDivision Immunology, Paul-Ehrlich-Institut, Langen, Germany

iImmune System Management Clinic & Lab, Ottawa, Ontario, Canada

jIndependent Adviser (formerly of National Institute for Biological Standards and Control), Potters 
Bar, UK

kDivision of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB 
Prevention (NCHHSTP)

lCenters for Disease Control and Prevention (CDC), Atlanta, GA, USA

Abstract

1. Corresponding author: email address: brightoncollaborationv3swg@gmail.com.
2.See Acknowledgement for other V3SWG members

Disclaimer: The findings, opinions, conclusions, and assertions contained in this consensus document are those of the individual 
members of the Working Group. They do not necessarily represent the official positions of any participant’s organization (e.g., 
government, university, or corporations) and should not be construed to represent any Agency determination or policy.

Conflict of Interest: Dr Marc Gurwith is employed by PaxVax, Inc which markets and develops vaccines, including developing an 
adenovirus vector vaccine. He also consults for several other biotech companies, but none develop vector vaccines currently.

HHS Public Access
Author manuscript
Vaccine. Author manuscript; available in PMC 2019 September 10.

Published in final edited form as:
Vaccine. 2019 September 10; 37(38): 5796–5802. doi:10.1016/j.vaccine.2018.08.085.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Live viral vectors that express heterologous antigens of the target pathogen are being investigated 

in the development of novel vaccines against serious infectious agents like HIV and Ebola. As 

some live recombinant vectored vaccines may be replication-competent, a key challenge is 

defining the length of time for monitoring potential adverse events following immunization 

(AEFI) in clinical trials and epidemiologic studies. This time period must be chosen with care and 

based on considerations of pre-clinical and clinical trials data, biological plausibility and practical 

feasibility. The available options include: 1) adapting from the current relevant regulatory 

guidelines; 2) convening a panel of experts to review the evidence from a systematic literature 

search to narrow down a list of likely potential or known AEFI and establish the optimal risk 

window(s); and 3) conducting “near real-time” prospective monitoring for unknown clustering’s of 

AEFI in validated large linked vaccine safety databases using Rapid Cycle Analysis for pre-

specified adverse events of special interest (AESI) and Treescan to identify previously unsuspected 

outcomes. The risk window established by any of these options could be used along with 4) 

establishing a registry of clinically validated pre-specified AESI to include in case-control studies. 

Depending on the infrastructure, human resources and databases available in different countries, 

the appropriate option or combination of options can be determined by regulatory agencies and 

investigators.
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I- Introduction

Immunization against vaccine-preventable diseases (VPD) is a highly cost-effective public 

health intervention.1, 2 Traditional methods of vaccine development against several major 

human pathogens may be less than optimal.3 New biotechnology approaches are being 

explored4 including the development of recombinant viral vector vaccines using an 

attenuated virus to carry and introduce viral DNA into antigen-presenting cells to induce 

both humoral and cell-mediated immune responses.5 “Vector” refers to the virus used as the 

carrier.6 Live viral vectors that express heterologous antigens of the target pathogen in vivo 

are being investigated in the development of vaccines against Human Immunodeficiency 

Virus type 1 (HIV-1)7, Plasmodium falciparum8, Influenza9, severe acute respiratory 

syndrome coronavirus (SARS-CoV)10, Ebola virus11, Hepatitis C virus12, Respiratory 

Syncytial Virus13, Mycobacterium tuberculosis14,15, Middle East Respiratory Syndrome 

(MERS)16, 17 Lassa Fever, Nipah,17, chikungunya and Zika viruses etc.18

Table 1 lists some viral vectors that have been or are being utilized.9, 19, 20

Live recombinant viral vectored vaccines include replication-defective and replication-

competent viruses with the possible association of two different heterologous vectors in 

prime-boost regimens. Replication-defective vectors may have a natural host-restriction such 

as the avipox vectors21, or they may have been attenuated either by serial passage (e.g. 

yellow fever virus) so that they are less virulent with decreased replication competency in 

humans, e.g., Modified Vaccinia Ankara22 or by genetic engineering that limits their 
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replication to less than a single cycle (abortive replication), e.g., in the case of most 

adenovirus vectors.23 The heterologous antigen gene may be of viral, bacterial, parasitic, 

oncologic, or gene therapy-based. The heterologous gene may comprise sequences coding 

for a portion of an antigen or an entire antigen, more than one antigen or heterologous 

antigen genes from more than one infectious agent.24, 25 In some cases protection against the 

wild-type virus from which the vector is derived, may also be sought.26

The immune response induced by a live recombinant vectored-vaccine depends on the extent 

and duration of the replication of the vector, the immunogenicity of the expressed 

heterologous antigen and the antigens of the vector itself. The virulence of live recombinant 

viral vaccines cannot be predicted from that of the viral vector, even when the vector is 

already attenuated for humans25, which emphasizes the need for extensive safety studies 

during clinical development before public health use. This will be even more critical where a 

vector of non-human virus origin is utilized. Information on the pathogenicity of the wild-

type virus for humans may be limited or absent. The potential for reversion to virulence or 

for recombination or reassortment with circulating wild-type viruses also must be 

considered.25, 26 The same viral vector may not demonstrate an identical safety profile when 

expressing different foreign antigens.27

Table 2 summarizes critical elements to be considered in the development of candidate viral 

vectored-vaccines.

As noted earlier, the list of recombinant viral vectors in pre-clinical and clinical development 

has expanded and thousands of subjects have been enrolled in clinical development for the 

control of various infectious diseases with recombinant adenovirus and poxviruses being the 

most advanced platforms.25 Given the large number of candidate vaccines now in clinical 

studies, the World Health Organization (WHO)28, 29, the US Food & Drug Administration 

(FDA)30, and the European Medicines Agency (EMA)24 have provided various guidance 

documents to identify appropriate regulatory pathways, development gaps and critical data 

sets to support the advancement of viral vector-based vaccines to licensure.

The Brighton Collaboration formed the Viral Vector Vaccines Safety Working Group 

(V3SWG) in October 2008 to help standardize the collection, analysis and dissemination of 

safety data regarding viral vector vaccines in pre- and post-licensure settings.31 The V3SWG 

hopes that by improving our ability to anticipate safety issues and meaningfully assess and 

interpret safety data from clinical trials of new viral vectored-vaccines, this will enhance 

safety knowledge as well as public confidence and vaccine uptake once licensed.

One way to enhance our understanding of vectored-vaccine safety is to improve surveillance 

for Adverse Events Following Immunization (AEFI). Vaccine Associated Adverse Events 

(VAERS), sponsored by CDC and the FDA, has been in use since the 1990’s (see below). 

Robust vaccine safety monitoring has many advantages including the discovery of 

potentially novel and unanticipated adverse events associated with vectored vaccines, the 

development and use of safer vaccines and minimization of the risk of Adverse Events (AE) 

after vaccination by providing specific recommendations, including contraindications and 

precautions for use.31–35
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As some live recombinant vectored-vaccines may integrate, one key challenge is defining 

the length of time for monitoring potentially related AEFI after receipt of viral vectored-

vaccines. This time period must be chosen with care and based on considerations of clinical 

trials data and biological plausibility.36 The follow-up time must be long enough to include 

a) the plausible period of increased risk (also called “risk window” or “risk interval”), and b) 

the comparison control “non-risk” time period for study designs where this period occurs 

post- (vs. pre-) risk window. In some studies of vaccine-associated Guillain Barré syndrome 

(GBS), the risk interval included days 1–42 after vaccination during which vaccine-

associated GBS was considered to be biologically plausible and the control interval was days 

43–84 after vaccination. The number of events of each type was tabulated each week and the 

number of AE in the post-vaccination window was compared with the number in the pre-

vaccination window. This case-only self-controlled method (also referred to as self-

controlled case series or SCCS) is commonly used in influenza vaccine safety studies to 

eliminate between-person biases.37 SCCS is a preferred study design to avoid the “healthy 

vaccinee” effect (HVE) commonly associated with pre-risk control windows. HVE refers to 

the fact that if an individual has been ill, recently hospitalized, or otherwise unwell, 

vaccination may be deferred by the health care provider, patient or primary caregiver until 

the health of the individual improves. This consideration is especially true for vaccinations 

in early infancy. Therefore, a vaccinated individual is more likely to be in a healthy state 

immediately before and after their vaccination. Consequently, HVE reduces AE rates in the 

immediate pre- and post-vaccination periods, reducing the power to detect AE.38 Selecting a 

surveillance duration that is too short or too long could cause a true increase in risk to be 

missed or obscured by random noise. Ideally, this duration should be based on statistical 

power considerations (e.g., continued until 90% power is achieved to detect the minimum 

absolute excess risk that is important for public health) and continued until any important 

risk can be ruled out. Due to the differences in background rates of specific AESI, the length 

of planned surveillance may differ by outcome for the same vaccine under study.39 AESI 

may take time to manifest and be detected (e.g., the VSV Ebola vaccine that was found in 

synovial fluid causing arthritis).11

A long duration of monitoring is often challenging in low- and middle-income countries 

(LMIC) with limited health infrastructure, in countries with evolving AEFI monitoring 

systems with multiple priorities and even in countries with excellent infrastructure which are 

challenged with new diseases and new vaccines.40, 41

2- Options for defining the length of follow-up

Some of the available options for defining the optimal length of follow-up for use in clinical 

trials and epidemiological studies of new pharmaceutical products, including viral vectored-

vaccine candidates, are mentioned below.

1) Adapt from current relevant existing guidelines.

The Risk Interval Working Group of the Clinical Immunization Safety Assessment Network 

(CISA) was formed in September 2010 due to the critical role that correct specification of 

risk and control intervals for AEFI play in observational studies of vaccine safety, and the 
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relative paucity of work done to formally assess and determine biologically plausible and 

evidence-based risk intervals.36 The group used febrile seizure and acute disseminated 

encephalomyelitis as models to provide an in-depth review of methodological issues related 

to the selection of risk and control intervals for consideration in future studies of 

immunization safety. As knowledge of the risk profile relative to the time since 

immunization for many AEFI is often incomplete, choosing more than one (e.g., a short and 

long) biologically plausible risk interval to evaluate in an active surveillance study may be 

appropriate.

The 2006 FDA guidance on Gene Therapy Clinical Trials – Observing Subjects for Delayed 

Adverse Events42 currently explicitly states it does not apply to “Vaccines used to prevent 

infectious diseases even if you use products analogous to those used for gene therapy.” 

Nevertheless, its guidance may provide a starting upper bound of a plausible risk interval(s), 

which may be adjusted downwards for a shorter interval(s) with an appropriate scientific 

rationale. For example, this guidance recommends a minimum 15-year follow-up, with a 

possibly shorter risk period(s) if supporting evidence is available (e.g., duration of in vivo 
vector persistence, transgene expression, feasibility etc.).

The 2015 FDA guidance on Considerations for the Design of Early-Phase Clinical Trials of 

Cellular and Gene Therapy (CGT) Products,43 states that a year or more of follow-up is 

appropriate for subjects in early-phase trials.

One source of relevant guidance more suited for resource-limited settings comes from 

maternal immunization trials.44 The minimum recommended follow-up period for women is 

6 months post-delivery or following the early termination of pregnancy. The minimum 

recommended follow-up period for infants is until 1 year of age.

Guidance 44 also allows for both shorter and longer follow-up periods with adequate 

scientific justification. The appropriate duration of follow-up depends on the results of 

preclinical studies, experience with related products, knowledge of the disease process, 

biological characteristics of the vaccine, the vaccine-targeted disease or an AESI, including 

outcomes identified in previous trials, or the characteristics of the vaccine recipient (e.g., 

nutritional state, underlying diseases such as immune-compromising condition and other 

associated co-morbidity conditions), or the intention to assess early childhood development 

(in the case of vaccines for pregnant women) and late-onset outcomes as part of the Risk 

Management Plan (which may require follow-up periods of 5 years or more). These 

guidelines acknowledge there are significant logistical challenges with extended follow-up 

periods, especially in resource-limited settings.40, 44

In general, long-term monitoring focuses on subject survival, on serious adverse events and 

AESI (that could include hematologic, immunologic, neurologic, or oncologic AESI). For 

some purposes, a telephone call to the subject, rather than a clinic visit, may be sufficient to 

obtain the necessary follow-up information. In addition, completion of long-term monitoring 

usually is not necessary prior to initiating subsequent trials or submitting a marketing 

application.43 Nevertheless, long-term monitoring in LMIC utilizing modern data collection 

methodology and recipient tracking to detect AEFI will be needed when a new viral vector 
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vaccine is first introduced in these LMIC countries. Otherwise, the new vaccine’s large-scale 

use may be delayed until such data has been gathered in other countries/settings with 

appropriate infrastructure.

2) Convening a panel of experts to review the evidence from a systematic literature 
search to narrow down a list of likely or known AEFI and establish the optimal risk 
window(s).

The Delphi technique is well suited for consensus-building and may be considered for the 

panel. It utilizes a series of questionnaires delivered using multiple iterations to collect data 

from a panel of selected subjects. It provides anonymity to respondents, a controlled 

feedback process, and the suitability of a variety of statistical analysis techniques to interpret 

the data. Subject selection, time frames for conducting and completing a study, the 

possibility of low response rates, and unintentionally guiding feedback from the respondent 

group are areas which should be considered when designing and implementing a Delphi 

study.45

For new viral vectored-vaccine candidates, it would involve convening a panel of experts 

with an appropriate understanding of the biological mechanism of action of the new viral 

vectored-vaccine and which AESI it may plausibly cause and the likely onset time frame for 

their occurrence. Such an expert panel was recently convened and was instrumental in 

developing the Vaccine Safety Datalink’s (VSD) white paper to prioritize studies of the 

safety of routine childhood immunization schedule.46 Once the specific AESI(s) and likely 

risk interval(s) have been pre-specified as hypothesis, the existing pharmacovigilance and 

pharmacoepidemiological infrastructure designed for pre- and post-marketing can be 

marshaled to detect and if needed, validate these safety signals.

While this expert-based approach has been widely used historically, the list of previously 

unsuspected AE once a pharmaceutical product is widely used is long.47 Unlike efficacy and 

effectiveness, vaccine safety cannot be measured directly. Human clinical trials typically are 

conducted using healthy non-pregnant volunteers and the safety assessment is focused on 

common short-term pre-specified local and systemic AE (e.g., pain at injection site, fever). 

Rare but serious adverse events associated with vaccines or drugs are often nearly 

impossible to detect on account of the selected enrollment and limited follow-up of subjects 

in pre-licensure studies and their detection requires conducting post-marketing monitoring 

(also called pharmacovigilance) after the introduction in the general population. The FDA 

also requires more diversity in the population studied because the incidence of AEFI might 

vary in different populations.48 Safety of these products can only be inferred by the relative 

absence of AESI when the population exposed to the new pharmaceutical product of interest 

is sufficiently large, diverse and monitored adequately. Absolute safety, while 

understandably desired as a goal, is difficult to assess, let alone guarantee, especially early in 

the lifecycle of any new product.
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3) “Real-time” prospective monitoring for unknown clusters of AEFIs in settings with 
validated large linked vaccine safety databases.

Traditionally, passive surveillance (also called spontaneous reporting) systems have served 

as a relatively affordable first line source of signals of previously unknown AEFI. The 

practice of conducting manual individual case reviews is now usually augmented by 

implementing computerized data mining algorithms on the entire MedDRA coded adverse 

event database to detect patterns of disproportionate reporting of adverse events.49 The US 

FDA and EMA have mandatory requirements for passive reporting of AEFI to the Vaccine 

Adverse Event Reporting System (VAERS)48 and EudraVigilance systems,50 respectively. 

The World Health Organization (WHO) is helping many LMICs improve their capacity to 

monitor AEFI,51 and these efforts could help to upgrade the capacity to monitor AEFIs over 

longer follow up periods (including coding AEFI for ICD (International Classification of 

Diseases), MedDRA (Medical Dictionary for Regulatory Activities) etc. beyond the short 

follow-up periods currently used.

To help overcome the many methodological limitations of passive surveillance for AEFI 

(e.g., under-reporting, biased reporting, lack of control groups),52 several high-income 

countries have developed active surveillance systems for AEFI for analyses of the 

association between a vaccine and one or more pre-specified adverse health outcomes. For 

example, the CDC created the Vaccine Safety Datalink53 (VSD) project in 1990 in 

collaboration with several managed care organizations. The VSD uses a distributed data 

model and de-identified International Classification of Diseases (ICD) coded data 

downloaded from the individual’s electronic health record to track the use of health services 

by the members of each participating site. This includes information on vaccinations (e.g., 

vaccine type, date of vaccination, and other vaccinations given on the same day) and the 

specific medical illnesses that have been diagnosed at doctors’ offices, urgent care visits, 

emergency department visits, and hospital stays. AEFI need to be coded accurately to be 

able to be found in the database. The US FDA oversees a complementary active safety 

surveillance system for vaccines called the Post-Licensure Rapid Immunization Safety 

Monitoring (PRISM) program.54 This consists mostly of insurance claims. The program is 

attempting to move to healthcare records and this brings with it new challenges.

Traditionally, the VSD and the PRISM systems conduct rigorous vaccine safety studies (e.g., 

comparing rates of AEFI within risk intervals to rates in control intervals) to test the 

hypothesized questions or concerns raised from the medical literature and reports to the 

VAERS. Such VSD studies usually take several years from inception to completion, 

however. VSD and PRISM studies, while population-based and rigorously conducted, have 

generally not addressed identification of previously unsuspected possible adverse reactions.
55

The Rapid Cycle Analysis (RCA) method of the VSD was created to allow more timely 

(e.g., weekly) analysis of pre-specified AESI with pre-specified risk intervals so the public 

can be informed quickly of possible risks of newly licensed vaccines or new immunization 

schedules.56 The RCA uses dynamic data files, aggregation of data, and sequential analysis 

methods (a new signal detection method that supports continuous or time-period analysis of 

data as they are collected, adjusting for the multiple statistical testing). PRISM now is 
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developing RCA capabilities. There are also reliable registries in countries like Denmark and 

Sweden that can do such studies.57

Excitingly, prospectively scanning for unknown clusters of new AESI in both clinical trial 

participants, and if licensed, in vaccines in routine use in the general population has become 

a reality. In the era of “large data”, the dream has been to develop methods that allow for 

ongoing scanning of administrative health records of pharmaceutical product exposures and 

medical outcomes for new safety signals, especially those not previously specified. Given 

the large number of statistical tests done, adjustments for multiple testing are needed to 

minimize the number of false positive signals that would otherwise waste valuable time and 

resources needed for assessment of true signals. This hope is coming closer to fruition with 

the development of the just described RCA for pre-specified AESI58,59 and TreeScan60 

(https://www.treescan.org/) for previously unspecified outcomes.

TreeScan is a novel scan statistical method by which the surveillance can be conducted with 

a minimum of prior assumptions about the group of vaccines that increase risk, and which 

adjusts for the multiple testing inherent in the many potential combinations.61 TreeScan is 

free data mining software that implements the tree-based scan statistic, a data mining 

method that simultaneously looks for excess risk in any of a large number of individual cells 

in a database as well as in groups of closely related cells, adjusting for the multiple testing 

inherent in the large number of overlapping groups evaluated. It has been developed for 

disease surveillance. For pharmacovigilance, it can be used to simultaneously evaluate 

thousands of potential adverse events and groups of adverse events, to determine if any one 

of them occur with higher probability among people exposed to a particular vaccine. For a 

particular disease outcome (e.g. kidney failure), it can be used to simultaneously evaluate if 

it occurs with increased risk among people exposed any of hundreds of pharmaceutical 

drugs or vaccines, or groups of related drugs or vaccines (https://www.treescan.org/). The 

TreeScan method allows a wide range of unsuspected but potentially adverse reactions to be 

simultaneously evaluated and otherwise unknown adverse reactions may be found. The main 

disadvantage is that it is not possible to adjust for all possible confounders. Indeed, no 

conclusion about causality should be based on TreeScan analyses alone. In effect, the 

TreeScan method serves as a tool for identifying AE that may merit a further careful 

pharmaco-epidemiologic investigation. 55 Treescan is only beginning to be used more 

widely, so more time is needed to assess its effectiveness (e.g., AESI with insidious onset 

have traditionally been challenging to study in traditional large-linked databases using 

methods requiring a prior definition of risk intervals). The use of Treescan will also likely to 

be limited to settings with high-quality administrative health (including immunization) 

records initially. For LMICs, this requirement may be more likely to be met in some urban 

centers and INDEPTH Network sites.

The risk-interval established by one or more of the above-mentioned methods can be used 

with the following option

4) AESI Registry and Case-Control studies

In the cancer field, specific cancer disease registries have been very effective research tools.
62 Case-control studies are particularly suitable for the study of relatively rare diseases with 
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a long induction period, such as cancer and possible AESI. Since cases in a case-control are 

by definition subjects who have already developed the condition of interest, there is no need 

to wait for time to elapse. A similar approach can be taken for safety monitoring of viral 

vector vaccine candidates with the establishment of a registry of cases identified with 

clinically valid pre-specified AESI and matched controls found from the hospital or 

neighborhood to compare for vaccine exposure history. These studies can be multi-national 

under a similar protocol. Given the rarity of these AESI, this is likely feasible only with 

post-marketing surveillance after substantial vaccine use has occurred. For settings where 

high-quality administrative health records are unlikely to be a reality in near future, this may 

be one possible alternative.

3. Conclusion

Live viral vectors that express heterologous antigens of the target pathogen in vivo are being 

investigated in the development of vaccines for numerous infectious diseases, making use of 

a variety of viral vectors. Live viral vectored vaccines may be based on replication-defective 

as well as replication-competent viruses. As some live recombinant vectored vaccine may 

replicate, one key challenge is defining the length of time for monitoring AEFI after 

administration of vectored vaccines in clinical trials and epidemiological studies. This time 

period must be chosen with care and based on considerations of clinical trial data and 

biological plausibility. A long duration of monitoring is often challenging in countries with 

poor health infrastructure, in countries with evolving AEFI monitoring systems with 

multiple priorities and even in countries with excellent infrastructure which are challenged 

with new diseases and new vaccines.36, 40 Some of the available options for defining the 

length of follow-up to be used in studies of new viral vector vaccine candidates include 

adapting from current relevant regulatory guidelines; convening a panel of experts to review 

the evidence from a systematic literature search to narrow down a list of likely or known 
AEFI and optimal biologically plausible risk window(s); conducting “near-real-time” 

prospective monitoring for unknown clustering’s of AEFI in validated large linked vaccine 

safety databases (e.g., Vaccine Safety Datalink (VSD), PRISM, etc.). This includes Rapid 

Cycle Analysis (RCA) for pre-specified AESI and TreeScan for previously unsuspected 

outcomes. The risk interval established by one of the above-mentioned methods can be used 

along with establishing a registry of cases identified with clinically validated pre-specified 

AESI to include in case-control studies. The available infrastructure, human and financial 

resources, coded databases in countries and regulatory guidelines will determine which (one 

or a combination) of these methods would be practically feasible. These options might be 

broadly applicable to the duration of surveillance for other new pharmaceutical products. 

The risk intervals selected for clinical trials or epidemiologic studies may not be of the 

appropriate length to rule out associations in individual cases. Since our knowledge of the 

pathophysiology of many AEFI is incomplete; a longer risk interval may be required when 

evaluating an AEFI in an individual. Rare individuals may have genetic immune defects that 

result in increased susceptibility to vaccine viruses. Mortality rates in vaccine recipients with 

such defects may be high. However, because of their rarity, they are likely to be discovered 

only in post-marketing analyses.63
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Table 1.

Some viral vector vaccine candidates in different stages of development for use in humans

Non-recombinant 
viruses no-longer in 
use in humans

Non-recombinant viruses in 
use in humans

Viral vectors already 
tested in humans

Viral vectors in preclinical 
development

Viruses in 
preclinical 
development

Vaccinia Ad4 (inactivated; live oral) Vaccinia hCMV Reassortment of 
Lassa and Mopeia 
viruses

MVA Ad7 (inactivated; live oral) MVA rLCMV Live attenuated 
Zika

Measles NYVAC rhCMV Live attenuated Rift 
Valley Fever

Mumps ALVAC Replicating Ad5

Rubella Fowlpox Ad55

MMR Ad3 ChimpAdY25

YFV 17D, 17DD, 17D204, 17D 
213

Ad5 YFV 17D

Live attenuated VZV Ad35 Chimeric Zika

Influenza virus (inactivated) Ad26 Rabies virus

Measles virus

Polio viruses (oral live 
attenuated; injectable 
inactivated)

ChimpAd63 ChAdC7

EV71 (inactivated) ChimAd3 Kunjin virus

EV71+CAV 16 (inactivated) ChimAdOx1

SA 14-14-2 JE live attenuated Chimerivax (dengue, 
JE)

Canine distemper virus 
(CDV)

Adeno Associated 
Virus

Rhesus rhadinovirus

Sendai Newcastle Disease Virus 
(NDV)

VSV Live attenuated Chinese 
equine infectious anemia 
virus (EIAV)

Ad-Adenovirus

CMV- Cytomegalovirus

MVA- Modified Vaccinia Ankara

LCMV- Lymphocytic choriomeningitis

NYVAC- Highly attenuated vaccinia virus strain

hCMV- Human cytomegalovirus

ALVAC- Canary pox virus

MMR- Measles, Mumps, and Rubella

YFV- Yellow Fever virus

VZV- Varicella zoster virus

EV- Enterovirus

CAV- Chicken anaemia virus
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JE- Japanese encephalitis virus
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Table 2.

Safety issues for consideration for candidate viral vector vaccines24

1 Characteristics, pathogenesis, and known adverse events of the wild-type virus, viral vector (before incorporation of the foreign 
antigen) and final recombinant viral vector vaccine (data from completed Viral Vector Vaccines Safety Working Group (V3SWG) 
templates can help to determine this)64

2 Potential for the generation of replication-competent virus from a replication-defective viral vector (measurement of the immune 
response to an antigen present in replication-competent viruses but absent in replication-defective viruses might help in 
identifying such a situation)

3 Potential for reversion of the viral vector to virulence; this might also occur during manufacture of a batch of vaccine or in 
vaccine recipients

4 Potential for recombination or reassortment with other infectious agents that might coincidentally occur in vaccinees around the 
time of dosing

5 Incidence of viremia

6 Assessment of the extent and duration of vaccine shedding and the potential for transmission of the live vectored vaccine to 
contacts

7 Potential for vaccination to trigger autoimmune diseases

8 Potential for integration of genes derived from the vector into the host genome

9 Consideration of specific adverse events that might reflect the distribution of the vector to specific body sites,

10 Potential for certain adverse reactions to occur only in subsets, e.g. those with a particular genetic predisposition

11 Potential for increased susceptibility to infection by the agent against which protection is being sought due to high levels of 
immunity to the vector virus

12 Potential for nucleotide mutations resulting in changes in the immunogen affecting vaccine effectiveness65

13 Potential of the viral vector to induce tolerance as evidenced by poor vaccine efficacy in clinical trials or epidemiological 
studies66
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